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INTERACTION OF AN EXPLOSION BUBBLE WITH A
FIXED RIGID STRUCTURE
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SUMMARY

In the recent times, the boundary integral method has been utilised extensively in the study of bubble
dynamics. This paper presents a modified form of the boundary integral method to model the motion of
a bubble close to a fixed rigid structure. The resulting integral equations are solved using the boundary
element method, and the system is integrated through time using a simple Euler scheme. Finally, the
results of the model are presented to predict the motion of a bubble in a number of typical axisymmetric
situations. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The behaviour of underwater explosions has been systematically investigated in the recent
times, beginning with mainly experimental investigations undertaken during the second world
war. Recently there has been considerable interest in the problem of determining the motion
of an explosion bubble, especially when there is a submerged structure close to the point of the
explosion. Typically, the initial radius of such bubbles is relatively small and the high pressure
of the gas inside the bubble causes it to expand. Eventually the hydrostatic pressure of the
surrounding water will halt the growth of the bubble and cause it to collapse, until the internal
pressure causes it to rebound and start growing again. However, it has been observed that as
the bubble collapses it forms a re-entrant jet, the direction of which is dependent on the
geometry of the fluid region in which the bubble exists. Often the direction of this jet is of
interest since it maybe directed towards a nearby structure immersed in the water, and it is
possible that the impact of the jet is a mechanism for causing damage to the structure.

A number of mathematical models have been proposed for solving the problem of
determining the bubble’s motion. One such model is based on the boundary integral method.
An axisymmetric formulation has been used by Blake et al. [1,2] to study the motion of
bubbles close to infinite rigid boundaries or free-surfaces. Best [3] proposed a modification to
the axisymmetric boundary integral method, to model the motion of the toroidal bubble that
results from the jet penetrating the opposite side of the bubble. Other models, such as those of
Chahine [4] and Harris [5,6], have employed a fully three-dimensional boundary integral
method to predict the motion of a bubble close to a rigid structure in the water. Clearly,
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models such as these can be used to determine the complete motion of the bubble and
surrounding fluid, and hence the direction of the bubble’s jet can be found directly from the
results of the simulation.

This paper shows how the boundary integral method, with an axisymmetric formulation,
can be used to model the motion of a bubble close to a fixed rigid structure, such as a sphere,
cylinder or plate, immersed in an infinite fluid. Section 2 introduces a simple mathematical
model that can be used to study the motion of the bubble in a fluid. In Section 3, the problem
is reformulated as an integral equation over the surfaces of the bubble and rigid structure, and
a numerical scheme for obtaining its solution is presented. Section 4 presents the results for the
motion of a bubble close to a number of different rigid structures, under the influence of
gravity.

2. MATHEMATICAL MODEL

This section presents a suitable model for determining the motion of a bubble close to a fixed
rigid structure by making the standard assumptions [1,2] that the fluid is inviscid, incompress-
ible and irrotational. Therefore, the flow field can be described by a velocity potential f, which
is a solution of Laplace’s equation [7]:

92f=0. (1)

The contents of the bubble (if any) are assumed to be ideal and the thermodynamic processes
are assumed to be polytropic with constant g. Hence, the pressure, Pb, within the bubble is
given by

Pb=P0
� V0

V(t)
�g

, (2)

where V0 is the initial volume of the bubble, V(t) is the volume of the bubble at some later
time t, and P0 is the initial pressure inside the bubble. If P� denotes the far-field pressure in
the z=0 plane, it is possible to write the Bernoulli equation for any point in the fluid as [7]:
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where r is the density of the fluid, g is the acceleration due to gravity assumed to be directed
parallel to the negative z-axis, and P denotes the pressure at the point in the fluid. Since the
fluid pressure at the surface of the bubble must be equal to the pressure of the gas inside the
bubble, Bernoulli’s equation yields
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at all points on the surface of the bubble. There cannot be a fluid flow perpendicular to the
surface of a fixed rigid structure, thus (f/(n=0 on all such surfaces. The initial conditions of
the system are that the initial potential on the bubble surface and the initial internal pressure
of the bubble are known. For a cavitation bubble, the initial potential is taken as the Rayleigh
solution [8], and the internal pressure is assumed to be zero; whilst for an explosion bubble, the
initial potential is zero but there is a large excess pressure inside the bubble.
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3. NUMERICAL ANALYSIS

In this formulation, the fluid domain (V) is assumed to be unbounded, and so there are
obvious problems with the use of domain-based numerical methods, such as the finite element
method, to solve the underlying differential equation. For this reason, the boundary integral
method has proved popular for solving problems such as this, as the three-dimensional infinite
domain differential equation problem is transformed into a two-dimensional integral equation
defined on a finite region, namely the surfaces of the bubble and the rigid structure. It can be
shown that the velocity potential f and the normal derivative (f/(n must satisfy Green’s
second theorem [9]:
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where S denotes the union of the surface of the bubble and the surface of the rigid structure
and G(p, q) is the free-space Green’s function:

G(p, q)=
1

4p �p−q �. (6)

For p�S, Equation (5) yields a first kind Fredholm integral equation for (f/(n if f is known,
and a second kind Fredholm integral equation for f if (f/(n is known. If p�Sb or p�Sr, where
the subscripts b and r denote the quantities on the surface of the bubble and the quantities on
the rigid structure respectively, the integrals appearing in (5) can be split to yield:
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This analysis can be generalised to more than two surfaces. The effects of an infinite rigid
plane on the bubble motion can be included by using the modified Green function

G(p, q)=
! 1

4p �p−q �+
1

4p �p %−q �
"

, (9)

where p % is the image of p in the rigid boundary, as used by Blake et al. [1]. To further simplify
the problem, it is assumed that the fluid domain and flow are axisymmetric about the z-axis.
In this situation, it is convenient to use cylindrical polar co-ordinates (r, u, z), and note that
due to axial symmetry, neither f nor (f/(n will depend on the angle u, thus reducing the size
of the computational problem. The surface of the bubble and the structure are generated by
rotating some appropriate curve about the z-axis. For both surfaces, the generating curve in
the (r, z) plane can be represented parametrically by two functions r(s) and z(s), where s is
some appropriate parameter, such as the arc-length. The surface Sb of the bubble is discretised
by choosing n+1 node points (r0, z0), . . . , (rn, zn) with z05z15 · · ·5zn, along the generating
curve. The parametric functions r(s) and z(s) are interpolated using clamped cubic splines [10],
where the endpoint clamped conditions are dr/ds= +1 and dz/ds=0 at z0 and dr/ds= −1
and dz/ds=0 at zn. Similarly, as the value of the velocity potential fb is known at the node
points, it can be interpolated by a clamped cubic spline with df/ds=0 at both ends. The

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 389–396 (1999)



P.J. HARRIS ET AL.392

unknown normal derivative of the potential, c, is approximated by using the piecewise linear
interpolation scheme:

cb(s)=cbj−1
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n
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n
sj−15s5sj, (10)

where sj and cbj
are the respective values of the parameter s and the normal derivative of the

potential at the jth node.
The surface of the rigid structure is discretised at m node points, but in this case the

generating curves r(s) and z(s) and the potential f are interpolated using a simple piecewise
linear scheme, as is the normal derivative of the potential, cr. Further details of these
approximations can be found in Amini et al. [11].

Using the approximate surfaces, potentials and the normal derivative of the potential
described above, it is possible to discretise Equations (7) and (8) using the collocation method
[12] to obtain a block matrix equation of the form�Mbb
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where fb is the vector of nodal values of fb and fr, cb, cr are similarly defined. Since the
unknown quantities are the normal velocity on Sb and the potential on Sr, Equation (11) can
be rearranged to obtain�Lbb
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which can be solved for cb and fr. Once both the potential and its normal derivative are
known on the surface of the bubble, it is possible to compute the components of the fluid
velocity (f/(r and (f/(z at each node by solving
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where (f/(s, (r/(s and (z/(s are obtained by differentiating the appropriate interpolating
cubic splines and nr and nz denote the r and z components of the unit normal respectively.

The location of the bubble surface can now be updated using the simple Euler scheme

ri(t+dt)=ri(t)+dt
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where Dfi/Dt is the total or the material derivative given by
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and (fi/(t is computed from Bernoulli’s equation (4).
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The time step dt is chosen such that

dt=
df

maxi
�)Dfi

Dt
)�, (19)

where df is the maximum change allowed in the potential fb at any node. This is to try and
ensure that the time stepping is stable. However, it is possible that Dfi/Dt is very close to zero
at every node, which would result in a very large time step. To avoid this, the additional
constraint that dt can be at most k times the pervious time step, for some constant k, is
employed.

4. COMPUTATIONAL RESULTS AND CONCLUSIONS

4.1. Non-dimensionalising the solution

In developing the numerical solution of the equations described in the previous sections, it
is convenient to scale all terms, thus producing dimensionless equations. All lengths are scaled
with respect to the maximum bubble radius, Rm, yielding the following dimensionless
quantities,

Z=
z

Rm

, R=
r

Rm

.

Quantities involving time are either explicitly or implicitly scaled as

Rm
� r

P�−Pb

�1/2

;

whilst the pressure, potentials and buoyancy are scaled as
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, F=
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r
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.

All calculations are made in terms of the above non-dimensional variables.
Figure 1 shows the location of the bubble centroid for a bubble close to a fixed rigid disk

of a large radius (labelled plate in the figure) and compare the location with that for a bubble
close to an infinite rigid boundary (labelled boundary in the figure). Figure 2 gives the
corresponding results for the bubble volume. Clearly the results from the two situations are in
agreement, showing that this method yields results that are consistent with previous work [1].

Figure 3(a) and (b) show the growth and collapse respectively, of a bubble that is 1.0 unit
above a fixed rigid cylinder. The radius of the cylinder is 1.0 unit and its height is 2.5 units.
The entire configuration is in the buoyancy field with a buoyancy parameter, d=0.1. The
figures illustrates that if the bubble is close to the rigid structure then it jets downwards
towards the rigid structure; whereas it would jet upwards due to buoyancy if the structure was
not there.

Figure 4 shows the displacement of the centroid of the bubble at different initial distances
above a fixed rigid sphere, in a mild buoyancy field (with the buoyancy parameter d=0.1).
The radius of the sphere is 3.5 units and the bubble is placed 1.0, 2.0, 3.0, 4.0 units
respectively, above the fixed rigid sphere. This shows that whether or not the bubble ultimately
moves towards or away from the structure depends on the initial distance of the bubble from
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Figure 1. Comparison of the displacement of the centroid of the bubble above a fixed rigid boundary and a fixed rigid
plate.

the structure. This effect is similar to that observed by Blake et al. [1] for a bubble near an
infinite rigid boundary.

The boundary element method has been shown to be a useful tool in predicting the motion
of a bubble in an infinite or semi-infinite potential flow situation. This paper has shown how

Figure 2. Comparison of the volume of the bubble above an infinite rigid boundary and a fixed rigid plate of a large
radius.
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Figure 3. (a) Growth of an explosion bubble above a fixed rigid cylinder. (b) Collapse of an explosion bubble above
a fixed rigid cylinder.

the basic method can be modified to include finite rigid structures immersed in the fluid close
to the bubble. For relatively large rigid structures, the bubble essentially behaves like a bubble
close to an infinite rigid boundary, whereas for structures that are approximately the same size
as that of the bubble, the interaction between the bubble and the structure is more
complicated.
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Figure 4. Displacement of the centroid of the explosion bubble at various distances above a fixed rigid sphere of
radius 3.5 units. The buoyancy parameter is 0.1.
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